

Journal of Solid State Chemistry 169 (2002) 143-148

JOURNAL OF SOLID STATE CHEMISTRY

www.academicpress.com

Spin dimer analysis of the three-dimensional antiferromagnetic ordering in the quaternary manganese sulfides $BaLn_2MnS_5$ (Ln = La, Ce, Pr)

Hyun-Joo Koo,^a Myung-Hwan Whangbo,^{a,*} and Kwang-Soon Lee^b

^a Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA ^b Department of Chemistry, The Catholic University of Korea, Puchon, Kyunggi-Do 422-743, South Korea Received 25 March 2002; received in revised form 27 June 2002; accepted 27 August 2002

Abstract

The quaternary manganese sulfides $BaLn_2MnS_5$ (Ln = La, Ce, Pr) consist of $(MnS_4)^{6-}$ anions separated with short S...S distances slightly longer than the van der Waals distance. Nevertheless, these sulfides are known to undergo a three-dimensional (3D) antiferromagnetic ordering at a reasonably high temperature (i.e., $T_N = 58.5$, 62.0 and 64.5 K for Ln = La, Ce and Pr, respectively). The origin of this observation was probed by studying the Mn–S···S–Mn super–superexchange interactions of $BaLn_2MnS_5$ on the basis of spin dimer analysis. The non-bonding S···S contacts in the vicinity of the van der Waals distance are found essential in determining the strengths of the Mn–S···S–Mn super–superexchange interactions. The antiferromagnetic spin exchange between adjacent $(MnS_4)^{6-}$ anions along the *c*-direction (J_2) is calculated to be stronger than that in the *ab*-plane (J_1) by a factor of ~ 10, so that the strongly interacting spin units of $BaLn_2MnS_5$ (Ln = La, Ce, Pr) are 1D chains made up of the exchange paths J_2 . The relative strengths of the spin exchange interactions for the J_1 and J_2 paths are consistent with the finding that the Néel temperatures of $BaLn_2MnS_5$ are reasonably high, and they increase in the order $BaLa_2MnS_5 < BaCe_2MnS_5 < BaPr_2MnS_5$. (\mathbb{O} 2002 Published by Elsevier Science (USA).

Keywords: Spin exchange interactions; Spin dimer analysis; Quaternary manganese sulfides; BaLn₂MnS₅

1. Introduction

Quaternary manganese sulfides $BaLn_2MnS_5$ (Ln = La, Ce, Pr) consist of LnS and $BaMnS_4$ layers parallel to the *ab*-plane [1,2]. Each LnS layer has S^{2-} ions at the centers of (Ln^{3+})₄ squares, and (Ln^{3+})₄ squares share their corners to form bent S–Ln–S linkages (Fig. 1a). Each BaMnS₄ layer has the NaCl-type arrangement of Ba²⁺ ions and tetrahedral (MnS₄)⁶⁻ anions elongated along the *c*-direction (Fig. 1b). The crystal structures of Ba Ln_2MnS_5 result when the LnS layers alternate with the BaMnS₄ layers along the *c*-direction (Fig. 1c). The shortest S…S distances between adjacent tetrahedral (MnS₄)⁶⁻ anions are slightly longer than the van der Waals distance (i.e., 3.60 Å) (Fig. 2a and b). Thus the tetrahedral (MnS₄)⁶⁻ anions of Ba Ln_2MnS_5 are well separated from one another, and so are the Mn²⁺ (d⁵) ions that are in the high-spin state (S = 5/2) [2]. Nevertheless, the Mn²⁺ ions undergo a three-dimensional (3D) antiferromagnetic ordering at a reasonably high temperature (i.e., the Néel temperature $T_N = 58.5$, 62.0 and 64.5 K for Ln = La, Ce and Pr, respectively) [2]. This means that the Mn-S...S-Mn super-superexchange interactions of Ba Ln_2 MnS₅ are substantial not only in the *ab*-plane but also along the *c*-direction.

The magnetic properties of $BaLn_2MnS_5$ present several important questions to probe. As depicted in Fig. 2, there are three adjacent super-superexchange paths, J_1 , J_2 and J_3 , to consider in $BaLn_2MnS_5$ [3]. The interlayer spin exchange J_2 (between the Mn^{2+} ions along the *c*-direction, Fig. 2b) takes place through the intervening *LnS* layer. Thus it is important to ask if the intervening *LnS* layer is essential for the spin exchange J_2 . The powder neutron diffraction study of $BaLa_2MnS_5$ at 7 K reveals that the antiferromagnetic transition doubles the unit cell along each crystallographic direction [3]. The analysis of its Néel temperature T_N

^{*}Corresponding author. Fax: +1-919-5157832.

E-mail address: mike_whangbo@nscu.edu (M.-H. Whangbo).

^{0022-4596/02/\$ -} see front matter O 2002 Published by Elsevier Science (USA). PII: S 0 0 2 2 - 4 5 9 6 (0 2) 0 0 0 2 1 - X

Fig. 1. (a) Arrangement of the Ln and S atoms in the LnS layer of Ba Ln_2 MnS₅. (b) Arrangement of the Ba²⁺ ions and tetrahedral (MnS₄)⁶⁻ anions in the BaMnS₄ layer of Ba Ln_2 MnS₅. The (MnS₄)⁶⁻ anions are elongated along the *c*-direction, so that the \angle S-Mn-S angles pointed along the *c*-direction are 94.8°, 93.8° and 92.6° for Ln = La, Ce and Pr, respectively. (c) Schematic view of the arrangement of the LnS and BaMnS₄ layers in Ba Ln_2 MnS₅, where the LnS layers were represented by planes and Ba²⁺ ions of the BaMnS₄ layers were omitted for simplicity.

(58.5 K) and Weiss constant θ (-96 K) using the molecular field approximation leads to the estimates, $(2J_1 + J_2)/k_B = -6.6$ K and $J_3/k_B = 0.80$ K [3]. Although both J_1 and J_2 are found to be antiferromagnetic [3], their individual values are unknown. Can we estimate the relative magnitudes of J_1 and J_2 , which are essential in understanding the 3D antiferromagnetic

ordering of Ba Ln_2 MnS₅? The Néel temperatures T_N of Ba Ln_2 MnS₅ increase in the order, BaLa₂MnS₅ ($T_N = 58.5$ K) < BaCe₂MnS₅ ($T_N = 62.0$ K) < BaPr₂ MnS₅ ($T_N = 64.5$ K) [2]. Does this trend mean that the strengths of J_1 and J_2 increase in the same order? In the present work we will probe the questions raised above by studying the spin exchange interactions of

Fig. 2. Spin exchange paths of $BaLn_2MnS_5$ (a) within the $BaMnS_4$ plane and (b) along the *c*-direction. The dotted lines refer to the short $S \cdots S$ contacts. The $S \cdots S$ distances in (a) are 3.864, 3.869 and 3.905 Å for Ln = La, Ce and Pr, respectively, and those in (b) are 3.754, 3.737 and 3.671 Å for Ln = La, Ce and Pr, respectively.

 $BaLn_2MnS_5$ (Ln = La, Ce, Pr) on the basis of spin dimer analysis.

2. Spin dimer analysis

The strengths of spin exchange interactions can be determined from first-principles electronic structure calculations either for the high- and low-spin states of spin dimers (i.e., structural units consisting of two spin sites) [4–6] or for various ordered spin arrangements of a magnetic solid [7]. In explaining trends in spin exchange

Fig. 3. Spin orbital interaction energy Δe of a spin dimer with two equivalent spin sites.

interactions of magnetic solids, it is sufficient to estimate the relative magnitudes of their J values [8–14]. In general, a spin exchange parameter J is written as $J = J_{\rm F} + J_{\rm AF}$, where the ferromagnetic term $J_{\rm F}$ (>0) is small so that the spin exchange becomes ferromagnetic (i.e., J > 0) when the antiferromagnetic term $J_{\rm AF}$ (<0) is negligibly small in magnitude. Thus antiferromagnetic spin exchange interactions (i.e., J < 0) can be discussed by focusing on the antiferromagnetic terms $J_{\rm AF}$ [9–14].

Consider a spin dimer in which each spin site contains one unpaired electron, and the two spin sites are equivalent and represented by non-orthogonal magnetic orbitals (i.e., singly occupied molecular orbitals of the spin monomers) ϕ_1 and ϕ_2 . Provided that S_{12} and Δe are, respectively, the overlap integral and the spin orbital interaction energy (Fig. 3) between ϕ_1 and ϕ_2 , then the antiferromagnetic term J_{AF} varies as $J_{AF} \propto - (\Delta e)^2 \propto - (S_{12})^2$ [8,9]. When each spin site of a spin dimer has M unpaired spins, the overall spin exchange parameter J of the spin dimer is described by [15]

$$J = \sum_{\mu=1}^{M} \sum_{\nu=1}^{M} \frac{J_{\mu\nu}}{M^2}.$$
 (1)

From the viewpoint of non-orthogonal spin orbitals localized at the spin sites, the antiferromagnetic contribution J_{AF} from each off-diagonal term $J_{\mu\nu}(\mu \neq \nu)$ is negligible because the overlap integral between two adjacent spin orbitals of different symmetry is either zero or negligible. Consequently, for the discussion of antiferromagnetic spin exchange interactions, only the *M* diagonal $J_{\mu\mu}$ terms can contribute significantly to the antiferromagnetic term J_{AF} [13,14]. Consequently,

$$J \approx \sum_{\mu=1}^{M} \frac{J_{\mu\mu}}{M^2}.$$
 (2)

м

Table 1

Atom	χ_i	H_{ii} (eV)	ζ_i	C^{b}	ζ'_i	C'^{b}
Mn	4 <i>s</i>	-9.75	1.844	1.0		
Mn	4p	-5.89	1.350	1.0		
Mn	3d	-11.67	5.767	0.3898	2.510	0.7297
S	3s	-20.0	2.662	0.5990	1.688	0.5246
S	3 <i>p</i>	-13.3	2.388	0.5377	1.333	0.5615

Exponents ζ_i and valence shell ionization potentials H_{ii} of Slater-type orbitals χ_i used for extended Hückel tight-binding calculation^a

^a H_{ii} 's are the diagonal matrix elements $\langle \chi_i | H^{\text{eff}} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H^{\text{eff}} = \langle \chi_i | H^{\text{eff}} | \chi_j \rangle$, the weighted formula was used. Source: See Ammeter et al. [21].

^bContraction coefficients used in the double-zeta Slater-type orbital.

Therefore, the antiferromagnetic spin exchange parameters J can be related to the average of the spin orbital interaction energy squares $\langle (\Delta e)^2 \rangle$ [13],

$$\langle (\Delta e)^2 \rangle = \sum_{\mu=1}^{M} \frac{(\Delta e_{\mu\mu})^2}{M^2},$$
(3)

where $\Delta e_{\mu\mu}$ is the spin orbital interaction energy associated with the two singly filled molecular orbitals of a spin dimer that result from the spin orbitals ϕ_{μ} from the two spin sites. Since J_{AF} is proportional to $-\langle (\Delta e)^2 \rangle$, it can be written as $J_{AF} = -\gamma \langle (\Delta e)^2 \rangle$. For antiferromagnetic spin exchange interactions, the proportionality constant γ can be estimated by comparing the calculated $\langle (\Delta e)^2 \rangle$ values with the corresponding Jvalues determined experimentally. Then the constant γ has the meaning of $1/U_{eff}$, where U_{eff} is the effective on-site repulsion [8,9,16].¹

3. Results and discussion

In reproducing trends in spin exchange interactions of magnetic solids in terms of Δe values obtained from extended Hückel calculations [17],² it is found necessary [10–14] to employ double-zeta Slater type orbitals [19] for both the 3*d* orbitals of the transition metal and the *s/p* orbitals of the surrounding ligand atoms. The atomic orbital parameters of Mn and S employed for our extended Hückel tight-binding calculations are listed in Table 1.

The Mn²⁺ ion of a tetrahedral (MnS₄)⁶⁻ anion is in the high spin state [2], so that the magnetic orbitals of (MnS₄)⁶⁻ are its five *d*-block levels (Fig. 4), and M = 5in Eq. (3). The spin dimers for the intralayer spin exchange paths J_1 and J_3 are represented by [(MnS₄)⁶⁻]₂, which are made up of two isolated (MnS₄)⁶⁻ anions. The spin dimer for the interlayer spin exchange path J_2 is also represented by [(MnS₄)⁶⁻]₂ if the intervening LnS layer is neglected, but by $[(MnS_4)^{6-}]_2(S^{2-})_2$ if we include the two S^{2-} anions of the LnS layer lying closest to the dimer $[(MnS_4)^{6-}]_2$. Results of our calculations of $\langle (\Delta e)^2 \rangle$ for the three compounds BaLa₂MnS₅, BaCe₂MnS₅ and BaPr₂MnS₅ are summarized in Table 2. To compare the relative strengths of the antiferromagnetic spin exchange interactions in these compounds, the relative J_{AF} values were calculated using the formula $J_{AF} = -\langle (\Delta e)^2 \rangle / U_{eff}$ with respect to the largest $\langle (\Delta e)^2 \rangle$ value (calculated for BaPr₂MnS₅) under the assumption that U_{eff} is constant.

Table 2 shows that the magnitude of the interlayer interaction J_2 is determined primarily by the direct Mn-S...S-Mn super-superexchange paths (Fig. 2b). The $\langle (\Delta e)^2 \rangle$ values for J_2 calculated by using the spin dimer $[(MnS_4)^{6-}]_2(S^{2-})_2$ are slightly smaller than those calculated by using the spin dimer $[(MnS_4)^{6-}]_2$. Thus the LnS layer is not essential in determining the strength of the interlayer superexchange interaction J_2 . It is clear from Table 2 that the interlayer spin exchange J_2 is stronger than the intralayer spin exchange J_1 (by a factor of ~ 10). This can be easily accounted for because the path J_2 has two short S...S contacts whereas the path J_1 has one and also because the S...S contacts of the path J_2 are shorter than that of the path J_1 (Fig. 2). Thus the strongly interacting spin units of $BaLn_2MnS_5$ (Ln = La, Ce, Pr) are 1D chains made up of the exchange paths J_2 , and these 1D chains interact weakly via the exchange paths J_1 . Although the exchange interaction through J_2 is stronger than that through J_1 , the latter is not negligible compared with the former. This explains why the Néel temperatures T_N of BaLn₂MnS₅ are reasonably high. Table 2 shows that the relative strengths of J_{AF} for the J_2 path increase in the order $BaLa_2MnS_5 < BaCe_2MnS_5 < BaPr_2MnS_5$, those for the J_1 path increase in the order BaLa₂MnS₅ < $BaCe_2MnS_5 \leq BaPr_2MnS_5$, and the differences in J_{AF} are more pronounced in the J_2 paths than in the J_1 paths. In general, the presence of stronger antiferromagnetic spin exchange interactions implies the occurrence of magnetic ordering at a high temperature. Consequently, the above results are consistent with the experimental finding that the Néel temperatures $T_{\rm N}$

¹This expression is valid when spin exchange parameters of a spin Hamiltonian are written as J instead of 2J.

²Our calculations were carried out by employing the CAESAR program package [18].

Fig. 4. 3D surface representations of the five magnetic orbitals of a tetrahedral $(MnS_4)^{6-}$ anion: (a, b) e_a orbitals; (c-e) t_{2a} orbitals.

Table 2	
Values of $\langle (\Delta e)^2 \rangle$ [in (meV) ²] and relative	J_{AF} values calculated for Ba Ln_2 MnS ₅ ($Ln = La$, Ce, Pr) ^a

BaLa ₂ MnS ₅		BaCe ₂ MnS ₅		BaPr ₂ MnS ₅	
$\langle (\Delta e)^2 angle$	Rel. $J_{\rm AF}$	$\overline{\langle (\Delta e)^2 \rangle}$	Rel. $J_{\rm AF}$	$\overline{\langle (\Delta e)^2 \rangle}$	Rel. $J_{\rm AF}$
216	-0.083	267	-0.102	273	-0.105
2074 ^b	-0.794	2278 ^b	-0.872	2612 ^b	-1.000
(1779) ^c	(-0.681)	(1844) ^c	(-0.706)	(2107) ^c	(-0.087)
44	-0.017	59	-0.023	40	-0.015
	$ \frac{BaLa_2MnS_5}{\langle (\Delta e)^2 \rangle} $ 216 2074 ^b (1779) ^c 44	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline BaLa_2MnS_5 & BaCe_2MnS_5 \\ \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c } \hline BaLa_2MnS_5 & BaCe_2MnS_5 \\ \hline $\langle (\Delta e)^2 \rangle$ Rel. J_{AF} & $\langle (\Delta e)^2 \rangle$ Rel. J_{AF} \\ \hline 216 & -0.083 & 267 & -0.102 \\ 2074^b & -0.794 & 2278^b & -0.872 \\ $(1779)^c$ & (-0.681) & $(1844)^c$ & (-0.706) \\ 44 & -0.017 & 59 & -0.023 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c } \hline BaLa_2MnS_5 & BaCe_2MnS_5 & BaPr_2MnS_5 \\ \hline \hline $\langle(\Delta e)^2\rangle$ & Rel. J_{AF} & $\langle(\Delta e)^2\rangle$ & Rel. J_{AF} & $\langle(\Delta e)^2\rangle$ \\ \hline 216 & -0.083 & 267 & -0.102 & 273 \\ 2074^b & -0.794 & 2278^b & -0.872 & 2612^b \\ $(1779)^c$ & (-0.681) & $(1844)^c$ & (-0.706) & $(2107)^c$ \\ 44 & -0.017 & 59 & -0.023 & 40 \\ \hline \end{tabular}$

^aThe relative J_{AF} values were calculated using the expression $J_{AF} = -\langle (\Delta e)^2 \rangle / U_{eff}$ with respect to the largest $\langle (\Delta e)^2 \rangle$ value (calculated for $BaPr_2MnS_5$) under the assumption that U_{eff} is constant.

^bCalculated by using $[(MnS_4)^{6-}]_2$ as the spin dimer for J_2 . ^cCalculated by using $[(MnS_4)^{6-}]_2(S^{2-})_2$ as the spin dimer for J_2 .

increase in the order, $BaLa_2MnS_5$ ($T_N = 58.5 \text{ K}$) < $BaCe_2MnS_5(T_N = 62.0 \text{ K}) < BaPr_2MnS_5(T_N = 64.5 \text{ K}),$ and the J_2 paths should contribute more to the differences in the Néel temperatures than do the J_1 paths. The J_{AF} term of the intralayer spin exchange J_3 is practically zero. This is consistent with the experimental finding that J_3 is ferromagnetic in BaLa₂MnS₅ [3].

In each magnetic orbital of a $(MnS_4)^{6-}$ anion, the Mn 3d orbital is a major component and the S 3p orbitals are a minor component (Fig. 4). Such a minor p-orbital component of a magnetic orbital, referred to as the p-orbital tail of the magnetic orbital, plays a crucial role in determining the sign and the magnitude of a spin exchange interaction [12]. Thus the strengths of the Mn-S····S-Mn super-superexchange interactions in $BaLn_2MnS_5$ are determined by the overlap between the *p*-orbital tails in the $S \cdots S$ contacts. All the short S...S contacts between adjacent $(MnS_4)^{6-}$ anions are slightly longer than the van der Waals distance. Nevertheless, from the observed 3D antiferromagnetic ordering in $BaLn_2MnS_5$ [2,3] and our spin dimer analysis, it is evident that the non-bonding S...S contacts in the vicinity of the van der Waals distance are crucial for the $Mn-S\cdots S-Mn$ super-superexchange spin exchange interactions.

Finally, we note that the magnetic moments of the Mn^{2+} ions in $BaLa_2MnS_5$ are oriented along the *c*-direction [3]. This should be related to the spin–orbit coupling [20,21] associated with the anisotropic spin density distribution around each Mn^{2+} ion, which should be elongated along the *c*-direction because of the elongation of the tetrahedral $(MnS_4)^{6-}$ anions.

4. Concluding remarks

The tetrahedral $(MnS_4)^{6-}$ anions of BaLn₂MnS₅ (Ln = La, Ce, Pr) are well separated from one another, with the short $S \cdots S$ distances slightly longer than the van der Waals distance. The present spin dimer analysis shows that these non-bonding $S \cdots S$ contacts in the vicinity of the van der Waals distance are critical for the Mn-S····S-Mn super-superexchange interactions, and the LnS layer is not essential in determining the strength of the interlayer spin exchange J_2 . Our calculations predict that the interlayer spin exchange J_2 is stronger than the intralyer spin exchange J_1 by a factor of ~ 10 , and hence the strongly interacting spin units of $BaLn_2MnS_5$ (Ln = La, Ce, Pr) are 1D chains made up of the exchange paths J_2 . The relative strengths of the spin exchange interactions for J_1 and J_2 paths are consistent with the observation that the Néel temperatures of BaLn₂MnS₅ are reasonably high, and they increase in the order BaLa₂MnS₅ < BaCe₂MnS₅ < BaPr₂MnS₅.

Acknowledgments

The work at North Carolina State University was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under Grant DE-FG02-86ER45259. K.-S. Lee thanks The Catholic University of Korea for Grant 2002.

References

- H. Masuda, T. Fujino, N. Sato, K. Yamada, J. Solid State Chem. 146 (1999) 336.
- [2] M. Wakeshima, Y. Hinatsu, J. Solid State Chem. 153 (2000) 330.
- [3] M. Wakeshima, Y. Hinatsu, K. Oikawa, Y. Shimojo, Y. Morii, J. Mater. Chem. 10 (2000) 2183.
- [4] F. Illas, I.P.R. de Moreira, C. de Graaf, V. Barone, Theoret. Chem. Acc. 2000, 104, 265, and the references cited therein.
- [5] L. Noodleman, J. Chem. Phys. 74 (1981) 5737.
- [6] D. Dai, M.-H. Whangbo, J. Chem. Phys. 114 (2001) 2887.
- [7] S.E. Derenzo, M.K. Klitenberg, M.J. Weber, J. Chem. Phys. 112 (2000) 2074, and the references cited therein.
- [8] O. Kahn, Molecular Magnetism, VCH Publishers, Weinheim, 1993.
- [9] P.J. Hay, J.C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 97 (1975) 4884.
- [10] H.-J. Koo, M.-H. Whangbo, J. Solid State Chem. 151 (2000) 96.
- [11] H.-J. Koo, M.-H. Whangbo, J. Solid State Chem. 153 (2000) 263.
- [12] H.-J. Koo, M.-H. Whangbo, Inorg. Chem. 40 (2001) 2169, and the references cited therein.
- [13] D. Dai, H.-J. Koo, M.-H. Whangbo, in: M.J. Geselbracht, J.E. Greedan, D.C. Johnson, M.A. Subramanian (Eds.), Solid State Chemistry of Inorganic Materials III, Materials Research Society, Warrendale, PA, 2001 (MRS Symposium Proceedings, Vol. 658, GG5.3.1-5.3.11, and the references cited therein).
- [14] H.-J. Koo, M.-H. Whangbo, S. Coste, S. Jobic, J. Solid State Chem. 156 (2001) 464.
- [15] M.F. Charlot, O. Kahn, Nouv. J. Chim. 4 (1980) 567.
- [16] M.-H. Whangbo, H.-J. Koo, Inorg. Chem. 41 (2002) 3570.
- [17] R. Hoffmann, J. Chem. Phys. 39 (1963) 1397.
- [18] J. Ren, W. Liang, M.-H. Whangbo, Crystal and Electronic Structure Analysis Using CAESAR, 1998, http://www.PrimeC. com/
- [19] E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14 (1974) 177.
- [20] R. Skomski, J.M.D. Coey, Permanent Magnetism, Institute of Physics Publishing, Philadelphia, 1999, pp. 12–14.
- [21] J. Ammeter, H.-B. Bürgi, J. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 100 (1978) 3686.